

Fraunhofer Institute for Applied Optics and Precision Engineering IOF

Additive manufacturing

High performance solutions for metal optics and optical housings

Additive manufacturing

🗾 Fraunhofer

High performance solutions for metal optics and optical housings

IOF

Purpose

Additive manufacturing is used to optimize and customize the base bodies for highperformance metal optic applications. High weight reduction, tailored mechanical and thermal conditions and a stable performance are realized while maintaining the high optical performance efficiency of the mirrors and housings.

Technology

- Metal-based powder-bed fusion
- Melting using a conventional cw-laser or a short and ultra-short pulsed laser
- Optimization of process chain for space applications, astronomical instrumentations or specialized custom applications

Details

- Weight reduction of up to 75 % through topology optimization, lattice structures or stochastic foam
- Structural features down to 300 µm
- Diamond turning of optical surface
- Functional plating (NiP, Cu) and coatings (Al, Ag, Au) for application in the VIS-NIR-UV spectral range
- Surface roughness < 1 nm RMS and form deviation < 150 nm PV (Ø 150 mm) after post finishing

Material

- Aluminum-based alloys
- Al 6061
- Aluminum-silicon alloys AlSixx with wide range of Si content (10 % to 60 %)
- AlSi40 matched to the CTE of electroless nickel polishing layer for low thermal induced distortions over an extended temperature range

Telescope made by additive manufacturing out of AlSi40 alloy.

Lightweight metal mirror during ultra precision diamond turning.

Cover: Additively manufactured metal mirror with internal light-weight structure.

Top: Topology optimized housing.

Contact

Department Precision Optical Components and Systems

Head of Department Dr. Stefan Risse Phone +49 3641 807-313 stefan.risse@iof.fraunhofer.de

Scientific Group Metal Optics

Dr. Nils Heidler Phone +49 3641 807-379 nils.heidler@iof.fraunhofer.de

Fraunhofer IOF Albert-Einstein-Strasse 7 07745 Jena Germany www.iof.fraunhofer.de

www. more info